高斯消元法解线性方程组 (高斯-塞得尔算法解方程组)
{输入方程个数n,再输入n个方程}
{例如方程3x+2y=1,2x+7y=0,则输入:
2
3 2 1
2 7 0
}
{使用了高斯消元法}
program p1052;{解线性方程组}
const maxn=100;
type float=real;
int=integer;
var a:array[1..maxn,1..maxn]of float;
b:array[1..maxn]of float;
d,t,sum:float;
k,l,i,j,m,n,ii,jj,loop:int;
ch:char;
begin
readln(n);
m:=n;
for ii:=1 to n do begin
for jj:=1 to m do read(a[ii][jj]);
read(b[ii]);
end;
k:=1;
d:=0;
l:=0;
while(k< =n)do begin
d:=a[k][k];
l:=k;
for i:=k+1 to n do begin
if(abs(a[i][k])>abs(d)) then begin
d:=a[i][k];
l:=i;
end;
end;
if(l<>k)then begin
for j:=k to n do begin
t:=a[l,j];
a[l,j]:=a[k,j];
a[k,j]:=t;
end;
t:=b[k];
b[k]:=b[l];
b[l]:=t;
end;
for j:=k+1 to n do a[k,j]:=a[k][j]/a[k][k];
b[k]:=b[k]/a[k,k];
for i:=k+1 to n do begin
for j:=k+1 to n do a[i,j]:=a[i,j]-a[i,k]*a[k,j];
j:=1;
b[i]:=b[i]-a[i,k]*b[k];
end;
inc(k);
end;
for i:=n-1 downto 1 do begin
sum:=0;
for j:=i+1 to n do sum:=sum+a[i,j]*b[j];
b[i]:=b[i]-sum;
end;
for loop:=1 to n do begin
if loop=n then ch:=chr(13) else ch:=' ';
write(round(b[loop]),ch);
end;
readln;
readln;
end.
一般认为高斯消元法适用于求解中小规模 (<100元) 的线性方程组.
A 为 m * m 系数矩阵;b 为 m 维常数向量。
C++ Code:
#include <cmath>
#include <cstring>
#include <algorithm>
/* Gaussian Elimination for Solving Linear Equations Set */
template <typename T>
inline T * gauss(T * * A, T * b, int m, T eps=1e-15)
{
// [cof con']=[A B']
int p, i, j;
T * * cof=new T *[m];
for (i=0; i<m ; i++) {
cof[i]=new T[m];
memcpy(cof[i], A[i], m*sizeof(T));
}
T * con=new T[m];
memcpy(con, b, m*sizeof(T));
T * & x=con;
for (p=0; p<m-1; p++) {
// find major element
int max=p;
for (j=p+1; j<m; j++) {
if (fabs(cof[max][p])<fabs(cof[j][p])) {
max=j;
}
}
if (fabs(cof[max][p])<eps) {
throw "Coefficient matrix is odd";
}
// apply row switching when necessary
if (max!=p) {
std::swap(cof[max], cof[p]);
std::swap(con[max], con[p]);
}
// elimination
for (i=p+1; i<m; i++) {
T rate=cof[i][p]/cof[p][p];
for (j=p; j<m; j++) {
cof[i][j]-=rate*cof[p][j];
}
con[i]-=rate*con[p];
}
}
// back-tracing the unknowns
for (p=m-1; p>0; p--) {
x[p]=con[p]/cof[p][p];
for (j=1; j< =p; j++) {
con[p-j]-=cof[p-j][p]*x[p];
cof[p-j][p]=0.0;
}
}
x[0]=con[0]/cof[0][0];
delete [] cof;
return x;
}
© 转载需附带本文链接,依据 CC BY-NC-SA 4.0 发布。