欧拉回路
欧拉回路 【定义】 图G的一个回路,若它恰通过G中每条边一次,则称该回路为欧拉(Euler)回路。 具有欧拉回路的图称为欧拉图(简称E图)。 【相关结论】 定理: 一个无向图是欧拉图,当且仅当该图所有顶点度数都是偶数或只有两个定点的度数为奇。 一个有向图是欧拉图,当且仅当该图所有顶点度数都是0。 求欧拉回路的一种解法 下面是无向图的欧拉回路输出代码:注意输出的前提是已经判断图确实是欧拉回路。 int num = 0;//标记输出队列 int match
\[MAX\];//标志节点的度,无向图,不区分入度和出度 void solve(int x) { if(match
\[x\]== 0)
Record
\[num++\]= x;
else { for(int k =0;k<=500;k++) { if(Array
\[x\] \[k\]!=0 ) { Array
\[x\] \[k\]–; Array
\[k\] \[x\]–; match
\[x\]–; match
\[k\]–; solve(k); }
} Record
\[num++\]= x; } } 注意record中的点的排列是输出的到序,因此,如果要输出欧拉路径,需要将record倒过来输出。 求欧拉回路的思路: 循环的找到出发点。从某个节点开始,然后查出一个从这个出发回到这个点的环路径。这种方法保证每个边都被遍历。如果有某个点的边没有被遍历就让这个点为起点,这条边为起始边,把它和当前的环衔接上。这样直至所有的边都被遍历。这样,整个图就被连接到一起了。 具体步骤: 1。如果此时与该点无相连的点,那么就加入路径中 2。如果该点有相连的点,那马就列一张表,遍历这些点,知道没有相连的点。 3。处理当前的点,删除走过的这条边,并在其相邻的点上进行同样的操作,并把删除的点加入到路径中去。 4。这个其实是个递归过程。
题外话:我帮你整理了包括 AI 写作、绘画、视频(自媒体制作)零门槛 AI 课程 + 国内可直接顺畅使用的软件。想让自己快速用上 AI 工具来降本增效,辅助工作和生活?限时报名。
© 转载需附带本文链接,依据 CC BY-NC-SA 4.0 发布。